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Abstract

This paper presents QoS Explorer, an interactive tool we

have developed which predicts quality of service (QoS) of a

workflow from the QoS characteristics of its constituents,

even when the relationships involved are complex. This

facilitates design and instantiation of workflows to satisfy

QoS constraints, as it enables the user to discover and

focus effort on the aspects of a workflow which most af-

fect their primary QoS concerns, thus improving efficiency

of workflow development. Further, the underlying model

we use is more sophisticated than those of similar recent

work [14, 2, 19], and includes processing of entire statisti-

cal distributions and probabilistic states (instead of the sim-

ple numeric constants used elsewhere) to model such non-

constant variables as execution time.

1 Introduction

Applications and business systems are now commonly

provided as web services. Larger software systems are as

a result increasingly constructed not monolithically, but as

compositions of web services — workflows. “Workflow”

here refers to a description of the composition of a set of

web services in terms of the flow of control from service to

service. This flow of control might be as simple as execut-

ing a series of services one after another, but many work-

flows are much more complex, involving parallel execu-

tion, conditionals and error handling; there are many spe-

cialist languages devoted to describing workflows as a re-

sult [20, 1, 8, 6, 17, 15, 4, 3].

A workflow might not specify a particular service in-

stance to carry out each part of the task. Service func-

tion, type or interface could instead be specified, leading to

greater flexibility: since in some cases there may be many

services available that perform a required task, the most

suitable service for each “slot” in the workflow may be se-

lected later in order to optimise the system’s non-functional

characteristics (including QoS). This allows the workflow

to be instantiated in different ways to satisfy a particular

user’s QoS requirements without altering its functional be-

haviour.

These QoS requirements may cover a wide range of non-

functional characteristics including performance (e.g. time

to complete), security (e.g. time between availability and

application of security patches and antivirus updates), relia-

bility (e.g. mean time to failure) and availability (e.g. mean

uptime per year). These characteristics may be expressed in

many different ways, and their names may have different

meanings to different communities — so ontologies will

prove benificial in specifications to express agreed defini-

tions of QoS terms, including both circumstances and units

of measurement. Several QoS specification languages and

frameworks exist, including QML [9] and WSLA [16].

Given a specification of a particular service’s QoS char-

acteristics and a reference to an ontology that describes the

included terms, the developer assembling a composite ser-

vice can then select which of the available compatible ser-

vices should be used.

Where a composition involves very few components and

their relationship in the workflow is simple, choosing which

component services to use should be relatively easy —

for example, if performance is crucial in the application

then the services with the best performance characteristics

should be selected.

Where services for a non-trivial workflow are being se-

lected in face of mutually conflicting requirements (e.g. low

cost and high performance), this task becomes more diffi-

cult. Services running in nested structures of parallel and

serial execution, with conditional branching and error han-

dling can produce complex relationships. Complex rela-

tionships between the services in the workflow lead to a

less intuitive relationship between the performance of the

individual services and the performance of the composite

service.

QoS Explorer can be used interactively to experiment

with different characteristics of components in a workflow

in order to see how these characteristics affect those of the

whole. These experiments can then be used to help decide



which of a range of candidate services should be selected

for the workflow, or to determine which components are the

main cause of constraint violations. A range of potential

uses for the tool is discussed later in the paper.

This introduction continues with more background on

service composition and the idea of experimenting with

compositions; Section 2 covers how we compute aggregate

QoS for a workflow from information about its components;

Section 3 shows QoS Explorer in action; and we conclude

in Section 4 with an evaluation and placement of this work

in context of other recent research in the area, as well as an

outline of possible future work.

1.1 Service composition

One of the major themes of service-oriented architec-

tures is that of building complex services out of simpler

components, i.e. performing higher level tasks by cre-

ating “value-added” services out of pre-existing building

blocks. This follows on from many earlier notions in soft-

ware development, viz. components, code reuse, shared

libraries, etc. Many new languages have been proposed

to facilitate this kind of “programming in the large”, in-

cluding WS-BPEL [20] (the OASIS-standardised version of

BPEL4WS [1], itself a merger of IBM’s WSFL [8] and Mi-

crosoft’s XLANG [6]), GSFL [17] (WSFL adapted to grid

computing), WSCDL [15] (a W3C candidate recommen-

dation), WSCL [4] and WSCI [3] (W3C notes preceding

WSCDL). Approaches vary from declaratively specifying

an executable sequence of operations through to more ab-

stract conversation/choreography description. There is also

a school which argues that all of these languages are re-

dundant, and that we should simply be adapting existing

scripting languages and RAD tools — Perl, PHP, Python,

Ruby — to the task. For our purposes however, all that is

really needed is a boxes-and-lines description of the work-

flow: many details, such as the nature of the data to be trans-

ferred, the type transformations involved in preparing one

service’s output for input to another, etc. are irrelevant to

inferring aggregate behaviour of the whole. The kind of

structures we do need to know about are the ordering con-

straints on the workflow — what can be run when — so the

workflow description we use reflects that: our workflow ele-

ments include “run these operations in parallel and wait un-

til they’ve all finished”, “run these one after another”, “run

this if a certain condition is met”, etc. This kind of high-

level structural profile of a workflow could be automatically

abstracted from many of the existing languages simply by

stripping away the excess detail that they specify; Van Der

Aalst et al. [21] give a good taxonomy of the fundamental

structures involved.

In order to be able to compute the aggregate behaviour of

these workflows, it is necessary that all services within the

workflow agree on what they’re measuring: if one is mea-

suring cost in Yen while another is measuring it in Euro,

or one is measuring “time to complete” from the client

perspective (including network latency) while another is

measuring it from the server perspective (no latency), it is

clearly not valid to try aggregating these measurements —

they’re not the same quantity, or not the same units, etc.

A common meaning must be agreed for all metrics being

processed. QoSOnt [7] is our approach to providing a QoS

ontology that provides the basis for agreement across com-

ponents and projects.

When trying to compute the effects of composition on

the measurable characteristics of a set of services — to in-

fer, say, the total running time, total cost, maximum net-

work bandwidth required, likelihood of failure — it is clear

that each different workflow element (parallel-all, parallel-

first (“start these services all at once but continue as soon

as the first completes”), conditionals, series, etc.) will have

a different effect on different characteristics. For example,

when running a collection of services in series, the band-

width requirement of the collection is the maximum of the

services’ individual bandwidth requirements, while the time

to complete is the sum of all of their times to complete. In

contrast, when running the services in parallel and waiting

for all to complete, the bandwidth requirement is the sum

of all individual bandwidth requirements while the time to

complete is the maximum of their individual times to com-

plete. Net cost on the other hand is the sum of all individ-

ual costs in both cases. It is clear that different measure-

ments behave differently under different composition oper-

ations. This gets more complicated when conditional exe-

cution (such as failover) enters the picture. For conditional

execution, one measurement (success rate, say) can affect

all others if it is one of the variables in the condition. For

example, if a backup service is executed just when the pri-

mary service fails, then all measurements need to take into

account the serial execution of the backup service which

occurs at some measurable rate.

1.2 Experimenting with composition
properties

In all but the most trivial of examples, the effects com-

position has on the performance of a system are impossible

to predict without calculation. These predictions are very

important in answering questions such as:

• Which components should be optimised in order to re-

duce the overall time to complete?

• Which third party components should we attempt to

reduce the cost of in order to reduce overall cost?

• Which components should we focus on debugging in

order to improve overall reliability?



• What effect would reducing the cost of operation X

have on the overall cost?

• Which component is causing us to breach our con-

straints?

We have implemented an engine that allows predictions

to be made about composite service characteristics based

upon the characteristics of the individual components. This

system is detailed in Section 2.

In addition to being able to make such predictions it

should be possible to experiment interactively with different

configurations. Answering questions such as “Which com-

ponents should be optimised in order to reduce the overall

time to complete?” should not require the user to write a

full specification for optimised versions of each component,

in order to see how they perform. It should be possible to

quickly change parameters of theoretical components and

re-calculate predictions of composite service metrics in or-

der to see what effect the change would have. Only with

this experimental tuning of the properties of services would

it be possible to answer these questions quickly and easily.

In QoS Explorer we have developed such a tool for ex-

perimenting with the properties of the services that make up

a composition; we describe it in more detail in Section 3.

2 Inferring composite service properties

In order to explore the space of service choices, ser-

vice characteristics and workflow modifications, it is nec-

essary to calculate the effect that varying each has on the

whole. Consequently we have developed Agrajag, a tool

which calculates the aggregate behaviour of a composition

in terms of its workflow structure and the known behaviour

of its individual services. Applications built on top of this

tool can take user specifications of workflows and choices

of services, evaluate them with Agrajag, and present the

user with a representation of how their composition might

be expected to behave, allowing the user to develop a feel

for which parts of their workflow are critical to the perfor-

mance characteristics they’re interested in and constraints

against which they’re operating.

As explained in the introduction, Agrajag starts with a

workflow W, the service instances from which it is con-

structed S1 . . . Sn, and the known performance of each of

those services PSi
. It then computes the aggregate perfor-

mance of the whole workflow, PW :

Agrajag(WS1...Sn
, PS1

, . . . PSn
) 7−→ PWS1...Sn

While so sophisticated a representation of composition

structure as WS-BPEL, or a scripting language, may not

be necessary, at least the basics of parallel, conditional and

serial operation need to be modelled. Parallel operations

range from simple variations like waiting for the first or all

responses through to more complicated ones such as voting

or waiting for a certain number of responses to satisfy a

condition (such as succeeding rather than failing).

From Agrajag’s point of view, a service instance within

a workflow is nothing more than a bundle of named typed

measurements representing the known behaviour of that ser-

vice1. These are the objects with which aggregation com-

putations are made. It is necessary to process all measure-

ments at once in these bundles because, once elements such

as conditional operations and “parallel-first-response” are

admitted to the workflow, individual measurements start to

affect the probabilities with which other service instances

are executed, hence affecting all measurements for depen-

dent elements of the workflow.

The “measurements” mentioned in the last few para-

graphs correspond to the QoS parameters in which the user

is interested — things like time to complete, availability,

accuracy, peak bandwidth usage, perhaps even cost. These

actually each comprise three things: the name, analogous

to a variable name in conventional programming; the be-

haviour (analogous to type), describing how the measure-

ment will behave under the different composition elements;

and the value, expressing the actual measurements for the

service instance in question. Behaviour is extracted from

a reference into our ontology, QoSOnt, as a mapping from

workflow operations to (numerical or logical) operations on

values. All workflow operations must eventually be applied

to actual measurement values if useful predictions are to

be made; the choice of underlying representation for these

values will be critical, as (for example) it will be very dif-

ficult to say anything about the slowest 10% of calls to a

service if all that’s known about that service is its average

performance. Possible representations for numeric quan-

tities include expected value; minimum-maximum range;

mean and variance of best normally distributed approxima-

tion; probability density function; Markov model of states;

etc. Even within an individual problem it will almost cer-

tainly make sense to use different value representations for

different properties. At the moment the main value repre-

sentation used is an approximation of the measurement’s

statistical distribution (probability density function) using a

variable number of uniform segments. This allows for mod-

erately accurate representations of a number of situations,

including delta functions, bimodal distributions, etc. Agra-

jag also supports values as probabilistic named states —

e.g. a “completion” state might take the value “succeeded”

99.99% of the time, and “failed” 0.01% of the time; this

succeeded-or-failed value being used to describe processes

1For our purposes, a “service instance” represents a single action

(method call) of an actual service; a real web service might offer several

such operations, but each operation needs to be represented as a separate

entity within the workflow for accurate modelling.



which occasionally fail for unknown reasons, and being

used to calculate the rate at which a backup service will

be invoked.

To illustrate this, Table 1 presents evaluations by Agrajag

of six different example workflows in the context of having

two available implementations of a service X: a “premium”

version with low probability of failure on demand (PFD)

and good response time2 (but high cost), and an “economy”

version which is cheap but slow and prone to failure. The

table details these three characteristics (time to complete (as

a probability density function), probability of failure on de-

mand, and cost) for all six choices.

The first two choices are straightforward: either choose

the premium service (A) or the economy service (B) — here

we see clearly how the first offers “four nines” and good

performance at a cost while the other relinquishes these

qualities in exchange for a cheaper service.

Next we have two failover structures, differentiated by

the primary choice of service: using the premium service

first (C) results in net behaviour dominated by that service’s

characteristics because it fails so infrequently — although

the net probability of failure on demand has now dropped by

one order of magnitude (assuming independence of failures

among the services); using the economy service first (D)

however results in an interesting blend of characteristics —

the same low failure rate as seen in C but at a low cost, al-

beit with fairly poor performance. Note that for these two

structures cost is bimodal: for D, Xeconomy succeeds 90%

of the time at a cost of £1, but 10% of the time its failure

results in fallback to Xpremium at a subsequent net cost of

£11. Thus over repeated use a low average cost of £2 is

observed, but for any individual use there is a 10% risk of

a much higher £11 cost. Regular users might be prepared

to take this risk, amortising the occasional expensive situ-

ation over many cheap ones, while infrequent users might

be uncomfortable at the prospect of a significant chance of

paying five times the average price.

The final pair of choices are based around another struc-

ture — invoking both services at the same time3, immedi-

ately using the first response in the case of E, and wait-

ing for both responses and comparing them in F. E conse-

quently offers the best performance of all choices, at a high

cost and with low probability of failure (Gashi et al. [11, 10]

have demonstrated substantial performance increases using

this model with diversely implemented databases). F on the

other hand seems to have no merit whatsoever — highest

cost, highest failure rate, and worst performance. This is

however entirely a consequence of what we have chosen to

model: if we also consider the likelihood of a correct re-

2The “lump” on its time graph is characteristic of an internal timeout-

based back-up within the service, and demonstrates the usefulness of Agra-

jag’s more detailed distribution-based models.
3Note that for certain services, most notably those with side effects, this

kind of structure is not acceptable.

Figure 1. How QoS explorer works

sult, then F would be the best performer — while it cannot

repair byzantine failures, it can at least identify situations

where we are unsure of the result and improve confidence

in the results it asserts to be correct, although it achieves

this by introducing a new failure mode and increasing the

failure rate (and can only even do this where failures are

independent and diverse).

Of particular use to systems designers is the fact that

the objects that Agrajag generates (representing particular

compositions of particular services) support rich statistical

queries such as “What is the maximum cost of this work-

flow?”, “Will no more than 10% of responses take longer

than 5s?”, “Is the average response time less than 2.5s?”,

etc.

3 QoS Explorer: a tool for experimenting

with composite service metrics

QoS Explorer is a software tool we have developed for

predicting composite service metrics based upon those of

a workflow’s constituents. The tool allows the properties

of components within the workflow to be altered manually

in order to experiment with different configurations and to

optimise overall performance.

The architecture of QoS Explorer and the main interac-

tions between the graphical component and the modelling

engine are shown in Figure 1.

QoS Explorer reads in an XML representation of the

workflow and renders a visual representation, such as that

shown in Figure 2. The fragment of the workflow shown in

Figure 2 consists of services in series and parallel. The flow

of control is from top to bottom. Service C would be exe-

cuted, followed by Services 1, 2 and 3 in parallel, followed



Table 1. Effect of choice and structure on behaviour. The small bars under the “time to complete”
curves represent [µ − σ, µ, µ + σ].

Time to complete

Workflow (seconds) PFD Cost (£)
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Series

Parallel

Service C

Service 1 Service 2 Service 3

Service D

Figure 2. Graphical representation of a work-
flow

by Service D.

The QoS characteristics of a service are entered by first

selecting the service by clicking on it, and then entering the

relevant characteristics into the table that appears to the left

of the graph, as shown in Figure 3.

The data entered can be actual data from measurement of

the performance of existing components, data published by

third parties or estimated data. Where the user is trying to

determine which components are the bottleneck in a compo-

sition or where to focus optimisation in order to achieve the

most benefit, repeated experimentation while varying char-

acteristics of different elements of the workflow will help

locate critical components.

When aggregate behaviour is calculated by clicking on

the execute button in the toolbar, the original XML descrip-

tion of the workflow is augmented with the metrics pro-

vided to QoS Explorer by the user. This description of the

workflow configuration is then passed to the Agrajag engine

which generates and returns a document describing the ag-

gregate performance of the workflow, as shown in Figure 1.

This information is displayed in a table to the left of the the

workflow graph, as can be seen in Figure 4.

3.1 Example

Figure 5 shows a slightly more complex workflow, one

in which failure of part of the workflow will cause a backup

component to be invoked. Anybody using QoS Explorer

Figure 3. Entering metrics for a service

Figure 4. Predicted aggregate performance



Series

Conditional

Key Operation

Parallel

Parallel

Parallel

Service 1

Service 2 Service 3

state = failed?

Yes

NoService 2 back-up Service 3 back-up

Service 4 Service 5

Figure 5. A workflow with a failover condi-
tional

would quickly discover that work invested in (or withdrawn

from) the back-up component will have little effect on many

overall system characteristics, and consequently direct their

investment to other parts of the workflow. While this is easy

to see in an example with so few services, as workflows be-

come larger and more complex it becomes much more dif-

ficult to develop an intuitive grasp of which elements are

most critical to non-functional objectives. As this becomes

the case we expect QoS Explorer will really show its worth,

easing identification of the services with most impact on the

user’s objectives, and making clear those which have little

impact on them — consequently allowing the workflow de-

veloper to focus work or investment only where it’s needed.

4 Conclusions and further work

QoS Explorer allows anyone building a composite web

service to predict the behaviour of the system they are as-

sembling in terms of a range of metrics, based upon the

properties of the services composed. In addition to predict-

ing the values of metrics, the tool can be used interactively

to determine which services in a composition are most im-

portant to the overall performance of the system in terms of

a given metric. This can be particularly useful where there

are constraints that must be met as it allows the user to en-

sure that the services they select for particular parts of the

workflow will allow them to meet these constraints.

While copious work has been done recently in this

area [14, 2, 19], much of it is predicated on the existence

of a competitive market in compatible services, as well as

mechanisms for automatic negotiation and entry into con-

tracts with the providers of such services. Such a situation

is not yet the case, and QoS Explorer addresses the real cur-

rent situation of composition development and service con-

tract negotiation still being a largely human-centered prac-

tice.

“Under the hood,” the prediction of the performance

of the composite service is carried out by Agrajag, a

probability-density-function-based statistical modelling en-

gine we have built. This technique is moderately compute-

intensive but is more accurate and allows far richer queries

to be made against workflow performance than would be

possible with other techniques (existing work seems to ex-

clusively use numeric constants as variables). The validity

and benefits of abstracting out a basic set of “workflow pat-

terns” instead of tying yourself to one complete workflow

language have been observed by Jaeger et al. [13] among

others.

QoS Explorer can be used to get a reliable estimate of

the performance of a composite service, where this infor-

mation would otherwise not be available or would be costly

to acquire.

The workflow operators supported by the tool are cur-



rently limited to a subset of the most commonly used, but

the system is extensible, allowing new operators to be im-

plemented in a modular fashion. QoS Explorer also does

not allow recursion in workflows for more fundamental rea-

sons, but in practice this isn’t often necessary. Also, this

work assumes independence of services, variables, failures;

it might be possible to apply research which quantifies the

level of (in)dependence in certain situations (such as [22])

to offer more realistic results.

In the future we want to add a number of metrics to the

core modelling engine, in order to allow prediction of an

even larger range of characteristics. Plans for the graphi-

cal component of the tool include improving ease of entry

of probability distribution parameters. The workflow de-

scription could be used to find a range of candidate ser-

vices from a directory, and the metrics used in aggregate

calculations could be obtained from descriptions of these

services. Automation of some tasks, using the more ma-

chine optimisation-focused ideas in [5, 18, 23] while draw-

ing lessons from Jaeger’s et al. [12] evaluation of selection

algorithms also seems desirable, so that QoS Explorer can

offer directed service choice recommendations to the user,

and highlight workflow bottlenecks and critical paths auto-

matically.
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